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In this paper we implement a spectral method for solving initial
boundary value problems which is in between the Galerkin and
collocation methods. In this method the partial differential equation and
initial and boundary conditions are collocated at an overdetermined set
of points and the approximate solution is chosen to be the least-squares
solution to this system of equations. The solution is obtained using
preconditioned residual minimization. Numerical results for linear and
nonlinear hyperbolic problems are provided. & 1994 Academic Press, Ing.

1. INTRODUCTION

Current formulations of speciral methods for solving
initial boundary value problems employ a spectral
discretization only in space and rely on finite-difference
techniques for advancing in time. As a result the global
accuracy of the method is reduced to only finite order
unless very small time steps are used, which is not always
practicable. Further, a proper theoretical underpinning to
the method is lacking at present.

In the carly 1980s Morchoisne [5, 6] had proposed a
method for solving such systems of equations which was
spectral in both space and time. However, even though his
numerical results were impressive, the method has not
acquired general acceptance so far. One reason for this was
that it required considerably more memory than conven-
tional spectral methods. However, with the increasing
availability and use of parallel computing systems this is no
longer a serious constraint, a point which was made by
Morchoisne in one of his papers [6]. Another possible
reason for the neglect of this approach was that it lacked a
theoretical justification.

Recently, Dutt [2] proposed a method for solving initial
boundary value problems which is similar to Morchoisne’s
approach in that it employs a spectral discretization in both
space and time; henceforth we shall refer to it as the
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Galerkin—collocation method. The method is set in a
Galerkin formulation as it seeks an approximate solution
which minimizes a weighted sum of the residuals in a filtered
version of the partial differential equations and initial and
boundary conditions.

The solution process, however, effectively amounts to
collocating the filtered version of the partial differential
equation and initial and boundary conditions at an over-
determined set of points. We show in this paper that the
filtering can be dispensed with, and it suffices to collocate the
partial differential equation and initial and boundary condi-
tions at the overdetermined set of points. The solution is
then obtained by finding a least-squares solution to the
overdetermined set of equations. It has been proved that the
solution thus obtained converges to the actual solution at a
spectral rate of accuracy in both space and time. In practice,
the huge, full, and overdetermined set of equations is solved
by iterative techniques in which a low order finite difference
solver is used as a preconditioner, as was first proposed by
Orszag [7] and Morchoisne [5,6]. Zang, Wong, and
Hussaini [10] have experimented with multigrid versions
of this approach in order to accelerate convergence of the
solution procedure.

We now outline the contents of this paper. In Section 11
we present a brief discussion of the proposed method and
theoretical results pertaining to it. In Section I1T we describe
the preconditioning technique we adopt for the scalar
problem and report the computational results we have
obtained. In Section IV we investigate preconditioning
techniques for the system case and highlight in particular
one technique which uses an approximate treatment of the
boundary conditions to effectively decouple the system
of equations. This, combined with a diagonal implicit
factorization technique [8,9], causes a considerable
reduction in computational effort and may have important
applications to solving such systems on parallel computers
using spectral techniques along with domain decomposition.
Finally, in Section V we present computational results for
nonlinear problems.
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II. DISCUSSION OF METHOD AND
THEOQRETICAL RESULTS

In this paper we restrict ourselves to the case of one space
dimension. The method we describe, however, 1s applicable
to any number of space dimensions.

We shali shift our initial time from 1 =0to = —1 as this
will considerably simplify our presentation. Consider- the
differential operator

Lu=u,~ Au,.— Bu. (1)

Here u is a vector-valued function with & components
and A and B are & x k matrix-valued functions which are
smooth functions of x and . We assume the system (1} is
strictly hyperbolic. We consider the initial boundary value
problem,

Lu(x, )= F(x, 1) for —1g€xgl, —-1<r<l,

{2.a)

with boundary conditions,
Mu(—1,1)=g(#) for —1<r<, (2.b)
Pu(l, ty=h(1) for —1<r<], (2.c)

and initial conditions,

w(x, —1)=flx) for —1<x<1. (2d)
If there are / inflow variables at the boundary x= —1 then

M is an / x k mairix-valued function which prescribes the /
inflow variables in terms of the (k —{) outflow variables.
Similarly if there are s inflow variables at the boundary
x =1 then P is an s x k matrix-valued function. Both M and
P are smooth functions of 1. We assume that the initial and
boundary data f, g, # and forcing function F are smooth and
satisfy the compatibility conditions which must hold at the
space-time corners for the solution « to be smooth. Finally
we assume that the above initial boundary value problem
{(IBVP) satisfies the uniform Kreiss condition. If the
uniform Kreiss condition is satisfied then the IBVP is well
posed; i.¢., the solution u depends continuously on its data.
More precisely, it has been proved that the estimate
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holds for some positive constant €. Here the norm | |
denotes the Euclidean norm.

One final remark we make is that an IBVP that is well
posed is “structurally stable™; ie., if we perturb the
coefficients of the differential operator and boundary
operator by a small amount then the perturbed problem
continues to remain well posed. This property is crucial for
proving that the approximate solution we obtain by our
method converges to the actual solution of the IBVP.

The method which we now describe applies to general
Geggenbauer polynomials but here we shall describe it
for Chebyshev polynomials. We recall that the Chebyshev
polynomials T,(y) = cos( cos~'(y)) are orthogonal with
respect to the weight function

in the interval [ -1, 1].
Let S7 be the set of polynomials w”9(x, ) of the form

whi(x, 1) = i i a; T,(x) T;(2),

i=0 ;=10

(4)

with scalar coefficients ;. Similarly, we shall denote
by (S79)* the set of polynomials w®¥ of the form (4} if the
coefficients a; are vectors with k components. Henceforth
we shall assume that there exists a constant 4 such that
VA< p/g< i

We now define an interpolation operator ™7 which takes
a continuous function r(x, r)definedon [ -1, I Jx[—1,1]
and projects it into §™9. Thus

Pz, )= Y Y bTi(x) T(0)=7%x, 1) (5)

F=0 i=0
is the unique polynomial belonging to S which
interpolates r(x,f) at the (p+1)x(g+1}) points

{(xF, tf)}i=0,__” s j=0,..q- Here the points

x? = cos(in/p), 0<igp,

4 =cos( jn/g),

are the Gauss-Lobatto—Chebyshev points.
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In much the same way we can define a one-dimensional
interpolation operator I/ which takes a continuous function
s{y) defined on [ —1, 1] and projects it into the space of
pelynomials of degree </ Thus

!
I's(y)= Z b,T,(y)=5(y) (6)

i=0

is the unique polynomial of degree <7 which interpolates

We can now use these interpolation operators to define a
filtered version of the differential operator

Lu=u,— Au,— Bu.
Let
AP = 1794,

Bri=friR

be the polynomial interpolants of the & x & matrix-valued
functions 4 and B. We now define the differential operator

Lo =u,— APy — B™y,

(7)

which can be regarded as a perturbed version of the original
differential operator Lu.
Similarly, we define

M= IYM,
PY=171P.

We now replace the original IBVP by a filtered version,

L™%(x, 1) for —1gx<g1l, —1<t<1, (8.a)
with boundary conditions,
M —1, )= g(t) for —1<r<1, (8.b)
PYi(1, 1) = h{r) for —1<r<l, {8.c)
and initial conditions,
a{x, — )= f{x) for —1<xgl, (8.d)

The above IBVP will be well posed if we choose p and ¢
large enough. In fact since {8) can be regarded as a pertur-
bation of (2) the energy estimate [2]
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holds for p and ¢ large enough, with some constant C.
Henceforth we shall let C denote a generic constant.
From the above the inequality

1 1
| et o) ax a
—14
H 1
ch j L7 u4(x, )] @(x) w(r) dx dt
—17-1

+£l lu?4(x, — 1)) w(x) dx

+jl IM7uP 9 — 1, )2 wt) dt

+fil IP4ur4(1, 1)) (1) d:} (10)

follows immediately since the weight function w = 1.

We wish to find an approximate solution u™4(x, t)e
{579)* to the above IBVP. Note that if u™%(x, t}& ($79)
then

LP9yPa(x, 1) e (S¥2),
Meu?4(—1, 1) (5%,
Pura(1, 1) e (S™),
u(x, ~1)e (S,

and this suggests that we should accordingly filter our data.



214 DUTT AND SINGH

Let s0 we can exactly evaluate the integrals in (12) by using the
~ very highly accurate Gauss quadrature rules. In particular,
F2(x, 1y=[*P3F(x, 1), for the Gauss—-Lobatto-Chebyshev rule we have that if s( y)

29(x, 1) = [%(1), is a polynomial of degree <2N — | then

(1) = I™h(1), ! n X sty; )
_ - | st d =5 5 =% (13)
Sox)y=1%f - -0 <

be filtered representations of the data. If we were t0  where the points yj,\’ are given by

substitute our approximate solution into the IBVP the

residuals y) =cos(mj/N), 0<j<N,

pPA(x, ty= LA 9(x, 1) — F¥(x, 1),
a?(r)=Muri(—1, 1) — g*(1),
_ (1) o
ni(r)=Pu™(1, l}—hz"(t), N:{z if j#0or N,

C; .
Px) = P 9(x, — 1) — F77(x) 1 otherwise,

and the weights ¢ c; are given by
i

would, in general, not be zero. We would like to choose our However, there is a stronger version of this rule which we
approximate solution u«”9(x, ) so that it makes these use for our particular case. Suppose r(y) is a polynomial of
residuals as small as possible and for this we need to define  degree < N. Then the inequality [1, p. 286]

a functional which will measure the size of the residuals.

Accordingly we define a functional A

L r(y) oly)dy < %Z LI

T S RTINS
<2 remyd  (14)
x wix) wlt) dx dt !

holds.

We can therefore replace the functional H”9(0#4) that we
are trying to minimize by an equivalent functional,

[ M1 0= POl o) d

o P, - B0 (o) de

2 2y 2p

HOswr )= 3 )
g " dpg
+fl lo7*(x, ~1) = f2(x)|? w(x) dx,  (12) P =0 i-o
1

- “Lp 4P 4(,(2;1 qu) F2r 2q(x2.t th)”?

cz”xc

where
by ) LE ML) - )
i, =Y W by Tilx) T, () e(S79~ 24 %, ¢
i=0 j=0 _
r 3P, £5) - R
We choose as our approximate solution the unigue i;_gao cf"
1”4 e (SP9)* which minimizes a functional H”“(p™*) over / o
. . . T 2 ||vf”’=’(x?f’ —1)—f2p(x?”)|i2
all v™4, where H?”4(v”9) is essentially equivalent to +* i) i . (15)
H”9(u79). 2p o cf"’

Now we observe that

pP(x, 1) = LPPo(x, 1) — P2 (x, 1)e (§72)k In fact, using (14) we conclude that

a(t) = MépP9(—1, 1) — g(1) e (S H7(079) < H9(u™7) < 4H79(0"),

—_ . _ Ry 2415
R0 =P (1, 1) — ) e (S, We choose as our approximate solution #” & (§77)* which
A (x)=0"%x, —1)— f7(x)e (S¥), minimizes H 74,
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In other words, our solution w®? is given by a least-
squares solution to the overdetermined system of equations,

7[2 172 2 ,
(aezez) (27w e= i)
=0, 0<i<2p, 0</<2g
n \l2 ’
(W) {MA( w41, 17) — gl139)}
i
=0, 052y,
o (16)
(m) (PO umo(—1, £7) — h(£}%)}
i
=0, 0<j<2g,
a \M2
(W) {uPi(x?, —1) = f)x¥)}
=0, 0<i<2p
Here, we have used the fact that F?2/(x7, 74} = F(x}*, £79)

etc., so we can work with point values of thc original data.
We may write the system (16) in the form

DPayPs = Zrd, (17)

where D™4 is a A x v matrix,
vector formed by concatenating the point values
{u? (Xl e o pio..q and Z77 is a A-column vector
with

A=k(Zp+1)2¢+ 1Y+ (I + )2+ 1)+ E(2p+ 1),
=k(p+1Mg+1)

We emphasize that /"¢ denotes the v column vector
defined above and u”%(x, r} is the polynomial belonging to
(S74Y* whose point values are the components of U#9, We
wish to find a least-squares solution to the problem (17).
Clearly, /™9 must satisfy the linear system of equations

[(Dp.q)T prayure = (Dp-cr)T yAh

In {27 it has been shown that the matrix (D”)T (D™) has
an inverse for p and ¢ large enough. Hence the sclution to
the minimization problem is unique.

To store the filtered representations of the coefficient
matrices A% B etc. would place a prohibitive overhead
on memeory requirements for realistic problems; there is
a way of getting around this, however. Instead of solving

U™ is a v column.
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the system (17) we choose /79 which is the least-squares
solution to the unfiltered system of equations

72 1/2

wpt 2m 2 g2

(W) {Luf"n’(xif’, qu)— ,P fq}}
=0, 0<i<, 0<j<2,

T v 2qY 75P-9 2y _ 2q
(2_(};) (M(129) 279(— 1, 1) — g(12%)}

=0, 0<j<2g,
o \172 (18)
(5mm) (P @01 5= ()
=0, 0</<2q,
7 1/2
() tamsxin, =)= 1)
g
=0, 0<i<2p,
as our approximate solution.
Note that the system (19) may be written as
Drafjre = zpra {19)

which is the same as (17), except that the matrix D?”¢ has
been replaced by D#9, where D> may be regarded as a
perturbed version of %9 If A(x, ) is a smooth function
then we know that

|A(x, 121) —

iy gp,qr{

259

is spectrally small for all i and j. Using this we conclude that
the matrix D”¢ differs from D79 by a spectrally small
amount and hence the difference between {79 and U77, the
least-squares solutions of (17) and (19), respectively, is
spectrally small.

It is the system of Eqs. (18), (19) that we will be solving in
the remainder of this paper. We make the arguments we have
outlined above rigorous in the following lemmas and
theorem.

LemMMma 1. Let v belong 1o the space of polynomials
S79 defined in (4). Then

(jl j' (0 wix) (1) d d:)

<C, (Ji. jil (6™9)2 dx d:),

where C,=E (pgY =", for any a>2 In particular,
choosing a =4 we obtain C, = E,(pg)*"*.

(20)
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Using Holder’s inequality we obtain
1 1
(j f (0792 w(x) (1) dx d:)
—1Y

) (J‘i' J-il (7)) dx d[)”a

x Uil ji] ((x) o(1})* dx dt)“ﬁ,

where 1/ + 1/8 = 1. Now

1 1 1
J—l ((1)(.\’))‘8 dx = J‘_l (1—_x2)ﬁ-2’ dx

is finite for 1 < ff < 2.
For a fixed value of f§ the right-hand side of the last

equation becomes a constant which we shail denote by D .
Hence we can conclude that

N 7
(.( | (=)o) dx d:) = D3P,

Now if 5( ¥} is a polynomial of degree m then by Nikolskii’s
inequality [1, p. 288]

1 L/ 1 1B
(I st ) smmes=m ([ o),
-1 —1

for 1 € f <o Thus we obtain

(j_ll Jil (07 9))* dx dt)‘fa

< K3(4pg)*t — 1= (_[1 J'l ((v™4)?) dx d:)
-1 1

Putting E, = K*(4D;)*# we obtain the required resuit. ||

LemMMa 2. There are constants K| and K, depending on p
and q such that the estimate

K Vo< | DR v < K, | VP92 (21)
holds. Here
Kl = C/p s
K2=Cp2»

where C denotes a generic constant.

Let v™¥x, t)=%4_o> 7 ga;,;TAx) T,(1) be the poly-
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nomiale (§74)* such that v”9(x7, tf)={V*4}, ; for
i=0,..,p j=0,.. 9. We have that

2 2y 2p

L7 2:71:_
[ DFay 24| 4;%12 2

Jj=0 i=0

"Lp,qvp,q(x?.v, 524;)” 2

2p..2q
eife;

n 2 M= )

+

2qj§0 cf“'

T Pl )
+? Z 2q

4,-0 €

T & e, = 1))
+2— S T E—

P i—o €

Then by (14} we obtain

|Drvre<a U L 0 ) (1) d dr
1

1
I 1P el di
1 |
1
+ P 1, )2 () ar
~1

+jll lo74(x, — D)2 w(x) dle.

Now by the inverse inequality for differentiation [1, p. 295]
if 79 ¢€ ($79)* then

LI

1 L
<ot [ Iorax 0P ofx) wl) dx
—1Y-1

a 2
v
i 6P (x, 1) wi(x)owl(t)dx dt

and

2

of{x)yow(t) dc dt

jil ji] H% v x, 1)

1 1
<Cq*[ [ ereix DI otx) wl) dx di,
-1 1

where by C we denote a generic constant.
Further, since Sup. yer-r17xr-117 14{x HI <, and
SUP(v ner—111x1—1.17 1B(x, 1) < C, we obtain

jl r IL7%79(x, )% o(x) w(1) dx dt

1 1
<Cp a9 || v 0 o) ) dx d

4 4y g P
<L S S o, -
Pq j—o i=0



GALERKIN-COLLOCATION METHOD

using {14). Hence we can conclude that

f | f IL7%™9(x, H* w(x)} w(r} dx dt

4

(p*+4q%)

<C Ve,

Now

1 o
j— o™ 4(x, —~ 1)* @ X)dx< lev”’“'(xpafl)ll2

—1 —0
o 4
2 S lo7o(xr, (32
i=0

=0

Hence we can conclude that

t C
J. [le74(x, *1)||2w(x)dx£—p||V”‘°’ﬂ2,
1 rq

and, by similar arguments, that

1 Cq 5
J IM*w#4(x, —1)|I2w(X)dx$;; [

1
| pwrege, — 1y
1

C
olx)dx <=2 |yro?,
qp
Combining all the above inequalities we conclude that
4 4
+
|Drevre<C (u) Ly e
pq
Now using the condition that there is a constant A such that

<

Pga,
q

B R

we obtain [P#9V#9|2 < Cp* | VP9
Next, we have to bound || D™9¥ 792 from below. Using
(14) we have that

1 1
nD""’V”"’Hl?f f L 9P9(x, 1)||% wix) o) dx dt
—1v—1
1
+j IM9p79(—1, 1) (1) dt
-1

P, ) ol d

[ porst, — DI (e dx
—1
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And so by (10) we can conclude that
1 1
|pravrarzc (| Jorate ) dxdr,
1Yt
and this, together with Lemma ! and (14), gives us

C
\ID‘”"V”“’WZEH G |

THEOREM 1. The difference between U9 and U779, the
solutions of Eqs. (17) and (19), respectively, is spectrally
small.

Proof. We have that

ed = {(DPJ{)T
(jp.q: {(ﬁP#)T

DF~4}—1 (Dp,q)T zZpr,
[jp-qr}—l (D'p-q)T FPa
Hence
“ P _ Up-q”
< (D7) DL (DP9 T

+H{(D)T Doyt~
x |(D7)T| 27|,

— (BT 1279
{(Dp,r;)T Dp.q} 71”
(22}

Now we know that | D™¢— D?¢| = 0(1/p’) for any s> 0.
And in Lemma 2 we have shown that

Ky VPP DRV PR < Ky Vo)

which implies that
VK 2 | {(DP)T D™} 2 /K, .
Hence
1{(DP)T DP9} (D7) T — (D)7 | 229

<1K,0 (p ) 1z, 23)

We now estimate the second term in the RHS of (22).
Clearly,

WD» ) < NP7 + (D7) —

sz\/EJro(%)
<2k,

(D7)

for p, g large enough.
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Put

= (Dp-q)T b
= {(DP'Q)T DF‘U.
Let
AM = (bp.q)T ﬁfw _ (Dp.q)T nes,

Then N = M + AM. It is easy to show that | AM||
for all s >0. Hence,

= 0(1/p’),

1M~ 02 paMil
I— 1M =) | 4M

IN =M< <2{M 7 | 4M|

for p, g large enough. So we obtain

2 1
N -m <m0 ()
Thus
D) D)=t = {(DP)T D7} 1| (D7 )T| 12|
VK 1
<4 2 - Py
o)z (24)
and
1z < sup IFCe D+ sup [g(0)]
{x,i}e[—1,1]x[—1.1] re[—1,1]
+ sup pAOI+ sup LA
rel—1,11 xe[—1,1]

Now combining (22), (23), and (24) we obtain the result:
~ 1
||U""‘—Uf’~4||$0(?> forall s>0. |

ItI. PRECONDITIONING FOR SCALAR PROBLEMS

The system ofl equations

Drayre = zrd (25)
is huge, full, and overdetermined. To obtain a least-squares
solution to this problem we resort to iterative technigues. In
this section we describe the numerical method for a scalar
problem. In this and the next sections we shall denote
our approximate solution u”¥(x, 1) =37 37 o al T (x)
TAr) by u(x,t) and this should cause no confusnon
Similarly we shall let U denote /79, where UP9=
§u4(x?, t!)} 2o, p.j=0....q IS the vector whose components
are the (p+1)x{(g+1) values of u™9 evaluated at the
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Gauss—Chebyshev Lobatto points. We can then write (25)
in the equivalent form
D"U=Z,  where Z=2Z"" (26)
Since we wish to find a least-squares solution to this
problem our solution {/ should minimize the residual
H(V)=|lp*V-Z|?,
and this suggests that we should seek the solution by using
preconditioned residual minimization. For this we need to
have an approximate inverse, which we shall denote by
(D"}~ !, to the matrix D7 and we typically use a low order
finite difference solver for (D“7)}~". The method can then be
described as:

(1) Given the current guess U™ compute the residual
R™=Z — pry™,
(2) Obtain an improvement V' for U by computing

v — (pory=t R,

(3) Update the current value of U by putting
Uit = gt g, ™, where w, is chosen as that value of
@ at which H(U " + ¥ ™} achieves its minimum. w,, can
be computed using the formula

(R(nl Dspy(nl)
w, = ’
n (Dspyfﬂl, DspV(nl)’

where ( , ) denotes the standard inner product.

We now explain each step in more detail.

(1) Given the (p + 1) x {g + 1) values of U
which are the point values of u'’(x, ) at the points
{(x70 1Y} o ps=o...s We compute I, the coefficients in
its representation as a Chebyshev series,

u"(x, 1)

Z Z v Tx) T,(0).

i=0 j=0

This can be implemented using either a two-dimensional
fast Chebyshev transform or, alternatively, by matrix multi-
plications. As the details of this are well known [7, 107 we
do not go into it any further. Since we need to compute the
residuals on a grid with (2p + 1) x (2g + 1) points we pad
the representation of «'™ with zeros as

2p

-5 $pris

=0 ;=0

u'")x, 1) ) Ty(1), (27)
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where y"' =0 for i>p or j>g We can now calculate
the values of u'(x,r} at the (2p+1}x(2¢+1) points
{(xP, 1) }ic0...2p.s= 0,2, DY using an inverse transform or
matrix multiplications. It is now an easy matter to compute
the residuals

pf’n] (H("] _‘r"’—bu‘”]—

U("] (M( J'Zc,v) u(n]( —1, l?q) _ 8(’,-2")),
P(e2) u" (=1, 1) — h(£})}

(
o) = (W, = 1) = f(x2),

F)(x7?, 1),

(28)

(n]

For the scalar problem we shall denote the matrices A4 and
B by aand 4.

The differentiations involved in computing (28} can be
implemented using matrix multiplications or transform
techniques. What is important to note is that these com-
putations can be speeded up immensely using vectorization,
as was pointed out by Orszag [7]. Henceforth we shall
denote the vector of residuals {p™, ', ), 10"} by R™,

{2) We now seek an iterative improvement to
the vector U/ which we denote by the vector V‘*'=
"2, ) i p 0. With (p+1)x(g+1) compo-
nents. Let W"”denote the prolongation of " onto the grid
with (2p+ 1}x (294 1) points {(X,‘zpa ’J:'!q)}520.....2p.j=0,...‘2
as described in (27). We can write this as

q

W = pyin, (29)
where P denotes the prolongation operator.
It is natural to seck ¥ as the solution of the system of
equations
DOV = prpy = Rm, (30)
where D™ is a finite difference discretization of the IBVP on
the finer mesh. Then we have

V{n) = P—I(Drd)—l R(n],

where P~ ' should be interpreted as the generalized inverse
of the operator P. We can write this in two steps as:

(a) Compute W™ =(D™)~! R™,
{b) Compute V"= p-lwon

We describe these steps further:

(a) In computing W™ it is important to choose the
finite difference operator so that it is easily invertible and
stable. A first- or second-order implicit approximate
factorization code based on central differencing ideally
fulfils all these objectives [8, 97. In fact, many of the general
purpose simulation codes in use in research and industry
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utilize just this approach and it should be possible to modify
them to perform spectral calculations. Further, since
these codes involve the solution of a set of independent
tridiagonal or block-tridiagonal matrix solvers the solution
process can be vectorized. We refer the interested reader to
[8, 9] for details.
We indicate the equations obtained from the finite
difference discretization of
wi —a(x, ) wi —

bix, yw™ =p"(x, 1) (31)

at interior points of the space time square using implicit cen-
tral differencing. Here W™ denotes the vector with (2p+ 1) x
(2¢+1) values {w™(x}, ) =wi}, Let
a;=a{x;?, 1) and b, r—b( rZ" t37).

To advance the solution from time ¢, to ¢; we can use
the implicit scheme

=0,..,2p.j=0,.2¢"

WiiT Wijer @y |:{w,1u,+1—w,,}+1 N W= Wiyt 1

At 2 Ax Ax’

Wit T Wi
4x"+ Ax

Wi~ W, Woi—W,
+ + ,
Ax Ax

Wi j—W

Wi T Werng U g Wit Wagen
Ax+Axt }:l !I{ 2 pl.,!

which is second-order accurate.
This can be written as

AW+ Bw iYW
=Pf.j*{&f”’f—l,jﬂ+Ei”’i.j+l+f’iwf+1u’+‘}’ (32)
where
1, @,
- Ax Ax+Ax 2’
_{ L 9
- Ax x+dx 2
1 1 1 by
ﬁ*_{ Ar~ ( Ax+AX) ?}’
1 1 1 by
'8’_{ Ar ( Ax+Ax)m?}’
k{;
T ldx  Ax+ax'| 2
—_ 1 aij
Tl Ax Ax+Ax 27
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The above equation uses information from the six-point
stencil shown in Fig. 1. Thus to advance from time level ¢, , |
to 7; we have to solve a tridiagonal system. To initialize the
procedure we impose the initial conditions

(33)

An) o (a)
Wizg=T; "

0<ig2q
We can impose the boundary conditions either implicitly or
explicitly. Inflow boundary conditions pose no problem.
Thus if x=—1 is an inflow boundary for {31) we simply
impose the boundary condition

(34)

() _ g(0)
sz‘j—dj .

If it is an outflow boundary, however, we either impose the
partial differential equation at the boundary impiicitly or
use extrapolation techniques [3]. Our computational
results show that the implicit treatment is preferable, so we
shall say a few words about it.

We use the four-point stencil shown in Fig. 2 to obtain
the equation

1 {”’217.;'— Wap st Wop— 1, T Wap 14 1}

2 At At

_ Y3 {szf i Waps  Wap—n 1 —Wopise 1}

2 dx Ax

s Wop it Wap je 1t T Wop st W1
2p. 0 =0;.
. 2 ‘

This is of the form

AypWap—1;t ﬂzpwzp,j= L {ﬂZpWZpA.jﬂ + ﬂprlp.j+ 1 },

(35)

2 p=

g‘-nx'-o_go-Ax --) [t2q=_l

X. X, X

i+ i i-1

FIGURE 1
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J
At
: t.
! !
lx2p x2p-—1
FIGURE 2
where
L_aZp.f__bZr’,J
#7241 24x 4
x :L¥a2.01~_b2pd
724 24x 4
B A by
7241 24x 4
g __ U am, by,
> 24t 24x 4

Note, that with this treatment of the boundary condition
our system of equations remains tridiagonal; and with this
we conclude our discussion of {a).

Computation for the Scalar Case

ExamPLE 1.
u,— (x +£(x’ I)) U,= F(X, f),

Fix, 1y =¢(x, #)sin (1 xe’) L e

with initial conditions,

. /m
u{x,0)=sin (-1—6 x),

and boundary condition,

i
—1,ty=u(l,t)=sin| —e' .
u(—1,t)=u(l, 1) sm(]ﬁe)
The results obtained for three different values of ¢(x):
(1) e/(x, 1)y=05xsin(3n(x+ 1)),
(2)  £a(x, 1)=0.5 xsin{dn(x + 1)),
(3)  e3(x, )=0.5xsin(5x(x + 1)),

are shown in Table L.
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TABLE I
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TABLE II

N 0S5xsin(3n(x +1)) 0.5 xsin(4nf{x + 1)) 0.5 xsin{Sx(x + 1))

33 ¢2> (503x107") {25 (6.69x 10~
(265 (2.69x107'% (30> (232x107'™

{3y (696x10-%%)
{435 (375x 1077

Note. N =number of collocation points.

EXAMPLE 2.

u,+xu,=0
with initial condition,

u(x, 0) = f(x).

Results obtained for three sets of initial data are given in
Table I

(i) fix)=sin{(n/16)x)
(i} f(x)=sin((n/33}x)
(i) f(x)=sin{(r/100)x).

Note that in Example No. | u is an inflow variable at

x= —1 and x =1, that is why the value of « is prescribed at
both the boundaries. Tn Example No.2 u is an outflow
variable at x = —1 and x =1, so the value of v at both the

boundaries is obtained by enforcing the partial differential
equation there. Orszag [ 7] had advocated a filter, in which
the top omne-third of the frequency components of the
numerical solution are removed and which he has referred
to as the two-thirds rule, for the preconditioning o be
effective. In Table III we give comparative results for the
two-thirds filter and the one-half filter, advocated by us.

It can be seen from Table Il that the one-half filter
performs better than the two-thirds filter.

. n F:4 . _T_f_

N sin Wx sin 33 sin l6x
33 0¢2) (211x107%) (25 (465%107%) (2> (8.86x10~%)
9y (501 =107y I3y (858x107') (123 (L.75x10°'%)

Note. N =number of collocation points.

1¥. PRECONDITIONING FOR THE SYSTEM CASE

Consider the hyperbolic system,

— Aw _— Bw=F, —1<x, t<l, {(36a)
where
(wy, wa),
A:(a“ x, 1) apnlx, ))
axn(x, 1) an(x, )]
B=(bu(x 1} by(xt ])
bylx, 1) byix, )’
F=(F(x,1), F(x, 1)".
We prescribe boundary conditions,
Mw(—1.t)=g(1) (36.b)
Pw(l, 1}=A(1), (36.c)
and inittal condition,
wix, —1)=fi(x) {36.c)

Here Misan/x 2 and Pisans x 2 matrix, where 0/, s <2;

TABLE III
a=x a=—Xx

fix) 1/2 filter 2/3 filter 1/2 Glter 2/3 filter
sin - ¢2> (L71x107%) {25 (522x1079) 2% (2.11x107%) (2% (209 x107%)
100 {58) (446x10~'% (65> (332x1077) <9y (501x10-1%) 10y (643 x 107"
o €2 (5.21x107%) {2y (1.55%107%) {2y (465%10~") <23 (457x 107%™
S ¥ ¢S1> (86Tx 1071 60> (307x10°7T) 13> (898 x10%) ¢16> (174 x10™%)
n & > (6.60x107%) {2y (303x107%) (2> (BB6x107%) {2y (LI6x10™")
ST <50 (231x10-1%) {50 {1.75x107%) A2y (175x 1077 (155 (729x107%)

Note. For u,—au,=0and u(x, 0} = f(x) (Example 2), where the number of collocation points is 33.
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/=0 means there are no boundary conditions at x= —1
and 5 =0 means that there are no boundary conditions at
x=1.

We use the central differenced discretization of

wi — A{x, 1) w"— B(x, 1) w" = p"(x, 1) (3N
at interior points of the space-time square to advance the
solution from time level ¢, | to ¢,.

As we have seen in the scalar case the equation uses infor-
mation from a six-peint stencil. Thus to advance from time
level 1, | to ¢; we have to solve a block-tridiagonal system.
To initialize the procedure we impose the initial condition

wi, =1, 0<ig2g

It is evident that block-tridiagonal matrix solver constitutes
the major portion of the numerical computation of the
standard implicit algorithm. Equation (39) producesa 2 x 2
block structure for the implicit operator. Pulliam and
Chaussee [8] have given an algorithm which transforms the
coupled system of equations into an uncoupled diagonal
form that requires considerably less computational work.

We describe this algorithm in brief for the system case. An
implicit approximate factorization scheme for the system
can be written as

(38)

i+

é
(I At A, )ijzR

Y ox
where Aw,=w;,; —w, and A, = A{x, 1), as we can
handle the lower order term explicitly. Here &/6x denotes
the centered difference approximation to the differential
operator 8/x.

The matrix 4, has a set of real eigenvalues and a com-
plete set of elgenvectors, hence a similarity transformation
can be used to diagonalize A, ,,

T”/\ T“,, (39

so we write (38) as

T—l

75 (40)

(T,-J-T,._—J‘ -4 T, /\

)Aw =R,

The modified form of the above equation is constructed
by moving T outside the difference operator 6/6x. This
results in the diagonal form of the algorithm

)
T,, (1 AN 6)T“Aw =R,
i

The modification has introduced an error, but Pulliam and

DUTT AND SINGH

Chaussee have shown that the error introduced by the
diagonalization is first order in time. The new implicit
operator (I—A4t A, . (d/6x)) 1s still block-tridiagonal, but
now blocks are dlagonal in form so that the operator
reduces to two independent scalar tridiagonal operators.

Numerical Treatment of Boundary Conditions

A correct treatment of the boundary conditions is
essential for an effective spectral calculation. If incorrect
boundary conditions are imposed on the numerical scheme
the resulting errors will propagate into the computational
domain. If these errors propagate and/or grow sufficiently
rapidly, they will destroy the solution.

Since the system is hyperbolic, A has real eigenvalues and
a complete set of cigenvectors. So there exists a matrix
T such that TAT ~! is diagonal. Equation (36.a) can be
rewritten as

TAT 'Tw,_ - TBT 'Tw=TF

Tw,—
or
W, — /\ W, —Bw=F
Here
w=Tw,
with

W= (W, W),

/\=TAT“,
T T-'-AT.T'=TBT™",
F=TF.

The variables w, and ¥, are called characteristic variables.
Assume that W, is an inflow variable and that W, is an
outflow variable at x = — 1. Then the boundary operator M
would be of the form
Mw{—1,)=w,(—1, ) —alt)wy{—1, 1), (41)
where «(r) 1s a function of ¢. Hence the boundary condition
at x= —1 could be written as
Mw{—1, 1) = g(1).

For the outflow variable we impose the partial differential
equation at the boundary implicitly. If we were to impose
(41} in the form

(=1, 1) = (42)

2 by a(t_f) ﬁ’z(*ly Ij)=g{tj)5
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the difference equation would no longer decouple into a
set of tridiagonal equations but instead would become
block-tridiagonal, We can get around this problem by an
approximate wreatment of the boundary condition. In (42) we
approximate the upknown value of #,(1,) by using either

{a} extrapolation or

(b) an explicit finite difference discretization of the
partial differential equation.

It is easy to show that both these techniques, which we
describe below, are GKSO (Gustalsson, Kreiss, Sundstrom,
and Osher) stable for a uniform mesh.

(a.i) Zeroth-order extrapolation. Here we simply put
1;'2(_],FJ)':VT"z(_l,rj+])f0r2q_1;j21.
{ail) First-order extrapolation. We define

1I’2(__11 l‘.‘2r,lkl)= WZ(_L l.‘2.',1)
and

Wol = L ) =wo(—1,¢;,5) + (4 + 4¢)

x‘z’z(_lv )= —=1, 1)
At ’

0<jig2g—-2.

(b} Explicit difference scheme. Here we use an explicit
difference scheme to compute w,{—1, ;) from the values
of w(—1,¢,,,) and W(x5,_,,#;,). Since the boundary
condition (b) does not give good results we omit describing
it in detail,

Computational Results for the System Case

Exameie L

0.01

= ( ~0.5+0.01 x sin(nx)
B 0.5 +0.05 x cos(n{x + :)))’

0.5
B=0,

and F(x, 1) = {fi(x, 1), fa(x, 1)}. If our characteristic

t

J
At
't_j+l
At*
1.
e AXa J+2
x2p x2p—1
FIGURE 3
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variables are #,(x, ¢) and #,(x, t) then &4,(x, r) is an inflow
variable at x = | and &,{x, #)is an inflow variable at x = — 1.

Case 1. Our solution is

u(x, 1) = ( sin{(m/33) xe') )

cos(2x— )y xe

and the boundary conditions are of the form

-1, 1) —2xsin(r) i —1, 1y=g{1),
il N—eli (1, 1y=hr)

with initial data

u{x, —1)=f(x).

We omit writing the rather involved expressions for F, g,
h, f.

Case 11. We choose

_{ sin({n/16) xe')
u(x, t)= (cos(2x —~31) % 8)850.1

Then the boundary conditions are
i =1 t)—a,(—1,1}=g(t),
{1, 1y — a1, 1y =h(r)
with initial data
u(x, —1y=fx)
In 4 and B the value of the inflow variable at the

boundary is obtained using boundary conditions (a.i) and
(a.ii), respectively (see Table IV).

ExampLE II.
05 00
A= .
00 —-0.5
TABLEIV
A B
Iterations Error Iterations Error
Case | 4 9248 x 10~ 2 2300x 109
56 5276 % 107 50 5529101
Case 11 3 8.868 x 10— 2 2.890 x 1003
57 4319x 10~ 51 2383x 107"
Note. The number of collocation points is 33.
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TABLE V
A B
Iterations Error Iterations Error
Case | T8 31387 % 10~92 2 7348 x 10~
25 2048 x 1079 12 2078 x10°Y
Case 11 45 7521 x 10~% 2 4135x10°%
99 1267 10~ 50 9393 x 10~
Case I11 2 1274 x 10~ 2 8812 x 109
25 6163 x 1079 42 5435x 1017

Note. The number of collocation points is 33.

Our solution is u(x, t) = {u,(x, 1), u(x, 1)} .

Case 1.
w,(x, t)=x*+ x>+ 10017 + cos(1)
wa(x, 1) =t* + (x + 1)° + sin{x).
Case 11
u(x, ty=cos (10_0 sin(x + t))
ty(x, =1+ (x + 1)? +sin(x).
Case TIL

#(x, fy=cos (ﬁ sin(x + r))
ts(x, ) =sin(2x —t).

with boundary conditions,

w(—Lt)—uy(—1,1)=g(1)
u2(1, f)_u](l, I)=h(t),
and the initial condition 1s
u(—1, 1) = fix).

In 4 and B the value of the inflow variable at the
boundary is obtained using boundary conditions {b} and
(a.ii), respectively. From Table V we conclude that boundary
condition (b} gives poor results in general.

IV. PRECONDITIONING FOR NONLINEAR PROBLEMS
We now consider the nonlinear IBVP

u,— A(H) U= F(X, t)s
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with boundary conditions,

Mu(—1, )= g(1), —1<gr<1, (43.b)
Pull, 1} =h(s), —1gr<, {43.c})

and initial condition,
ufx, —1)y=f(x), —I=€x<1; (43.d)

and we assume that the solution u is smooth. We choose as
our approximate solution 1*% € {§”%}* which minimizes

RZ 2¢ 2p

dpg jgo jgo Mo =A™y o2~ F)

x (x, 19)]2

H™"9pm9) =

2g

3y % IMO(— 1, 59 g
2 TP 5 - HGE

2p
Y P, — 1 ()P (44)
2p i=0

over all v77¢ (574)*. Clearly, this gives rise to a nonlinear
least-squares problem, which we may write as

LAUhYU=Z. (45)

We solve this nonlinecar least-squares problem by the
preconditioned residual minimization method as before. We
outline the main steps:

(1) To obtain an initial guess U ® for the solution we let
V' be the solution obtained on the finer mesh with
{(2p+ 1) x(2g+ 1) points by using a first- or second-order
finite difference solver for the nonlinear IBVP (43). Then we
obtain U@ from ¥ by truncating the highest half of its
frequency components as before.

(2) Suppose at the nth stage of the iteration that we
have an approximate solution U™ corresponding to
u'"™{x, t). We can now calculate the residuals,

pri(x, ) =ul™ — A" ul — F#2(x, 1),
oty =Mu"(—1, 1) — g¥(2),
ni(1) = P, t)—h_z"'(t)
(xy=u"(x, —~1)— f*(x

(46)

We wish to find a correction v(x, r) to u"{(x, t); corre-
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sponding to the function v(x, 1) € (57)* we have the vector
V. Then v(x, 1) should approximarely satisfy

v,— A ) v, — A(u") v

= p"x, 1), —-1<g1, —1gxgl, (47a)
BM [H
—_— -1,
([ au ]u—u") ( ’ )
=" )(1), -1, (47.h)
)
([E:L=u") {1, I)
=Y, 1<, {47.c)
s(x, —1)=1"(x), —1<x<1, (47.d)

which is obtained by linearizing (43) about ¥™. Thus p can
be obtained as the solution of a linear IBVP. Hence we can
use the preconditioning techniques already described to
obtain a correction V. Specifically, let ¥ be the solution
obtained on the finer mesh by a finite difference solver for
(47); then ¥V is obtained by truncating the highest half of the
frequency components of W. We compute the relaxation
factor w, so as to minimize the residual:

n d
H " w)=7— 3, (e, ~ @A) v, - p'™h)

4pg ;To o

x (x¥, )

n 2 oMT" 2
—_ - o ’Zq — gl e2g
+2q§£(”[au1mm)(” )=o)
n X oP 2
—_ il 24y _ 800 629
+2‘11§o (w[au]u_m)(l’ R
n
+= 3 ev(xi?, —1) =" (x?)|% (48)
2pj=0

We then define
Uln+1]= U(Ji]+w V.

We remark that our numerical experiments indicate that it
is enough to consider » as an approximate solution to the
partial differential equation,

v, — A"y v, =p", —-1gr<g1, —1€x<1,

along with the initial and boundary conditions (47.b}-(47.d)
to obtain convergence of the numerical scheme,

Computational Results for the Nonlinear Case

ExaMPLE [. We consider the Burger’s equation

u,+uu. = Fix, 1), (49.a)

with u(x, 1) = — 10 + sin{(7/16) xe‘).

581/112/2-2
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TABLE VI
Nonlinear results
Iterations Error

Example I 6 6487 x 1079

25 1682 x 10710

Example IT 6 6463 %10~%

25 1571 x 10—

Note. The number of collocation points is 33,
Then we have to impose the boundary condition

u(—1)=g(r), —lst<l, (49.b)

and no boundary condition at x = 1. The initial condition is

ulx, —1)=f(x). (49.c)
ExampLE II. We consider the isentropic Euler
equation,
y—2
GG )
Pre \¥P u P/
u(x, £)=x2+ 10+ cos (1“—6 sin (x + z)) (50)

plx, )=x*+2+sin(2x—1)?3  y=20.

The flow is supersonic, so we do not have to specify a
boundary condition at x= — ! or at x =1 for both p and «.
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